## 티용․

ECS3510-52T 52-Port Layer 2<br>Fast Ethernet Switch

Installation Guide

INSTALLATION GUIDE

ECS3510-52T Layer 2 Fast Ethernet Switch<br>Layer 2 Switch with<br>48 10/100BASE-TX (RJ-45) Ports, and 4 Combination Gigabit (RJ-45/SFP) Ports

## Compliances and Safety Statements

## FCC－Class A

This equipment has been tested and found to comply with the limits for a Class A digital device，pursuant to part 15 of the FCC Rules．These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment．This equipment generates，uses，and can radiate radio frequency energy and，if not installed and used in accordance with the instruction manual，may cause harmful interference to radio communications．Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense．

You are cautioned that changes or modifications not expressly approved by the party responsible for compliance could void your authority to operate the equipment．

You may use unshielded twisted－pair（UTP）for RJ－45 connections－Category 3 or better for 10 Mbps connections，Category 5 or better for 100 Mbps connections，Category 5，5e，or 6 for 1000 Mbps connections．For fiber optic connections，you may use 50／125 or 62．5／125 micron multimode fiber or 9／125 micron single－mode fiber．

## Japan－VCCI Class A

この装置は，クラス A 情報技術装置です。この装置を家庭環境で使用す
ると電波妨害を引き起こすことがあります。この場合には使用者が適切な
対策を講ずるよう要求されることがあります。
VCCI－A

## CE Mark Declaration of Conformance for EMI and Safety (EEC)

This information technology equipment complies with the requirements of the Council Directive 204/108/EC on the Approximation of the laws of the Member States relating to Electromagnetic Compatibility and 2006/95/EC for electrical equipment used within certain voltage. For the evaluation of the compliance with these Directives, the following standards were applied:

RFI Emission: Limit according to EN 55022:2010, Class A

- Limit for harmonic current emission according to EN 61000-3-2:2006/ A1:2009/A2:2009, Class A
- Limitation of voltage fluctuation and flicker in low-voltage supply system according to EN 61000-3-3:2008
Immunity: - Product family standard according to EN 55024:2010
- Electrostatic Discharge according to IEC 61000-4-2 Edition 2.0 200812
- Radio-frequency electromagnetic field according to IEC 61000-4-3 Edition 3.2 2010-04
- Electrical fast transient/burst according to IEC 61000-4-4 Edition 2.1 2011-03
- Surge immunity test according to IEC 61000-4-5 Edition 2.0 2005-11
- Immunity to conducted disturbances, Induced by radio-frequency fields: IEC 61000-4-6 Edition 3.0 2008-10
- Power frequency magnetic field immunity test according to IEC 61000-4-8 Edition 2.0 2009-09
- Voltage dips, short interruptions and voltage variations immunity test according to IEC 61000-4-11 Edition 2.0 2004-03
LVD: $\quad$ EN60950-1:2006+A11:2009


## Safety Compliance <br> Warning：Fiber Optic Port Safety

When using a fiber optic port，never look at the transmit laser while it

CLASS I<br>LASER DEVICE is powered on．Also，never look directly at the fiber TX port and fiber cable ends when they are powered on．

Avertissment：Ports pour fibres optiques－sécurité sur le plan optique

DISPOSITIF LASER
DE CLASSE I

Ne regardez jamais le laser tant qu＇il est sous tension．Ne regardez jamais directement le port TX（Transmission）à fibres optiques et les embouts de câbles à fibres optiques tant qu＇ils sont sous tension．

Warnhinweis：Faseroptikanschlüsse－Optische Sicherheit

LASERGERÄT DER KLASSE I

Niemals ein Übertragungslaser betrachten，während dieses eingeschaltet ist．Niemals direkt auf den Faser－TX－Anschluß und auf die Faserkabelenden schauen，während diese eingeschaltet sind．

## PSE ALARM

本製品に同梱いたしております電源コードセットは，本製品専用です。本電源コードセットは，本製品以外の製品並びに他の用途でご使用いただくことは出来ません。製品本体に同梱された電源コードセットを利用し，他製品 の電源コードセットを使用しないで下さい。

## BSMI（Taiwan）

警告使用者：此爲甲類資訊技術設備，於居住環境中使用時，可能會造成射頻擾動，在此種情況下，使用者會被要求採取某些適當的對策。

## 電氣方面的安全性

－爲避免可能的電擊造成嚴重損害，再搬動產品之前，請先將產品電源線暫時從電源插座中拔掉。
－當您要加入硬體裝置到系統中或者要移除系統中的硬體裝置時，請務必先連接該裝置的訊號線，然後再連接電源線。可能的話，在安裝硬體裝置之前先拔掉產品的電源供應器電源線

- 當您要從主機板連接或拔除任何的訊號線之前，請確定所有電源線已事先拔掉。
- 請確定電源供應器的電壓設定已調到本國／本區域所使用的電壓標準。若您不確定您所屬區域的供應電壓爲何，那麼請就近詢問當地的電力公司人員。


## Compliances and Safety Statements

－如果電源供應器已損壞，請不要嘗試自行修復。請將之交給專業技術服務人員或經銷商來處理。

## 操作方面的安全性

－在使用產品之前，請確定所有的排線，電源線都已正確地連接好。若您發現有重大的瑕疵，請盡速連絡您的經銷商。
－爲避哂發生電氣短路情形，請務必將所有沒用到的螺絲，迴紋針及其他零件收好，不要遺留在主機板上或產品主機中。
－灰塵，溼氣以及劇烈的溫度變化都會影響主機板的使用壽命，因此請盡量避免放置在這些地方。

- 請勿將產品主機放置在容易搖晃的地方。
- 若在本產品的使用上有任何的技術性問題，請和經過檢定或有經驗的技術人員聯絡。


## 使用注意事項

－在您開始操作本系統之前，請務必詳閱以下注意事項，以避免因爲人爲的疏失造成系統損傷甚至人體本身的安全。
－使用前，請檢查產品各部份組件是否正常，以及電源線是否有任破損，或是連接不正確的情形發生。

- 如果有任何破損情形，請盡速與您的授權經銷商連絡，更換良好的線路。
- 產品放置的位置請遠離灰塵過多，溫度過高，太陽直射的地方。
- 保持機器在乾燥的環境下使用，雨水，汪氣，液體等含有礦物質將會腐蝕電子線路。
- 使用時，請務必保持周遭散熱空間，以利散熱。
- 使用前，請檢查各項周邊設備是否都已經連接妥當再開機。
- 避免邊吃東西邊使用，以免污染機件造成故障。
- 請避铛讓紙張碎片，螺絲及線頭等小東西靠近產品之連接器，插槽，孔位等處，避免短路及接觸不良等情況發生。
- 請勿將任何物品塞入產品內，以避免引起機件短路或電路損毀。
- 產品開機一段時間之後，散熱片及部份 IC 表面可能會發熱，發湯，請勿用手觸摸，並請檢查系統是否散熱不良。
- 在安裝或移除周邊產品時請先關閉電源。
- 電源供應器如果發生損壞，切勿自行修理，請交由授權經銷商處理。
- 產品的機殼，鐵片大部份都經過防割傷處理，但是您仍必須注意避免被某些細部鐵片尖端及邊緣割傷，拆裝機殼時最好能夠戴上手套。
－當你有一陣子不使用產品時，休假或是颱風天，請關閉電源之後將電源線拔掉。


## Power Cord Safety

## Please read the following safety information carefully before installing the switch:

WARNING: Installation and removal of the unit must be carried out by qualified personnel only.

- The unit must be connected to an earthed (grounded) outlet to comply with international safety standards.
- Do not connect the unit to an A.C. outlet (power supply) without an earth (ground) connection.
- The appliance coupler (the connector to the unit and not the wall plug) must have a configuration for mating with an EN 60320/IEC 320 appliance inlet.
- The socket outlet must be near to the unit and easily accessible. You can only remove power from the unit by disconnecting the power cord from the outlet.
- This unit operates under SELV (Safety Extra Low Voltage) conditions according to IEC 60950. The conditions are only maintained if the equipment to which it is connected also operates under SELV conditions.

France and Peru only
This unit cannot be powered from $\mathrm{IT}^{\dagger}$ supplies. If your supplies are of IT type, this unit must be powered by $230 \mathrm{~V}(2 \mathrm{P}+\mathrm{T})$ via an isolation transformer ratio $1: 1$, with the secondary connection point labelled Neutral, connected directly to earth (ground).
${ }^{+}$Impédance à la terre
Important! Before making connections, make sure you have the correct cord set. Check it (read the label on the cable) against the following:

## Power Cord Set

| U.S.A. and Canada | The cord set must be UL-approved and CSA certified. <br> The minimum specifications for the flexible cord are: <br> - No. 18 AWG - not longer than 2 meters, or 16 AWG. <br> - Type SV or SJ <br> - 3-conductor <br> The cord set must have a rated current capacity of at least 10 A <br> The attachment plug must be an earth-grounding type with NEMA 5-15P ( $15 \mathrm{~A}, 125 \mathrm{~V}$ ) or NEMA 6-15P ( $15 \mathrm{~A}, 250 \mathrm{~V}$ ) configuration. |
| :---: | :---: |
| Denmark | The supply plug must comply with Section 107-2-D1, Standard DK2-1a or DK2-5a. |
| Switzerland | The supply plug must comply with SEV/ASE 1011. |
| U.K. | The supply plug must comply with BS1363 (3-pin 13 A) and be fitted with a 5 A fuse which complies with BS1362. <br> The mains cord must be <HAR> or <BASEC> marked and be of type HO3VVF3GO. 75 (minimum). |
| Europe | The supply plug must comply with CEE7/7 ("SCHUKO"). <br> The mains cord must be <HAR> or <BASEC> marked and be of type HO3VVF3GO. 75 (minimum). |

IEC-320 receptacle.

## Veuillez lire à fond l'information de la sécurité suivante avant d'installer le Switch:

AVERTISSEMENT: L'installation et la dépose de ce groupe doivent être confiés à un personnel qualifié.

- Ne branchez pas votre appareil sur une prise secteur (alimentation électrique) lorsqu'il n'y a pas de connexion de mise à la terre (mise à la masse).
- Vous devez raccorder ce groupe à une sortie mise à la terre (mise à la masse) afin de respecter les normes internationales de sécurité.
- Le coupleur d'appareil (le connecteur du groupe et non pas la prise murale) doit respecter une configuration qui permet un branchement sur une entrée d'appareil EN 60320/IEC 320.
- La prise secteur doit se trouver à proximité de l'appareil et son accès doit être facile. Vous ne pouvez mettre l'appareil hors circuit qu'en débranchant son cordon électrique au niveau de cette prise.
- L'appareil fonctionne à une tension extrêmement basse de sécurité qui est conforme à la norme IEC 60950. Ces conditions ne sont maintenues que si l'équipement auquel il est raccordé fonctionne dans les mêmes conditions.


## France et Pérou uniquement:

Ce groupe ne peut pas être alimenté par un dispositif à impédance à la terre. Si vos alimentations sont du type impédance à la terre, ce groupe doit être alimenté par une tension de $230 \mathrm{~V}(2 \mathrm{P}+\mathrm{T})$ par le biais d'un transformateur d'isolement à rapport $1: 1$, avec un point secondaire de connexion portant l'appellation Neutre et avec raccordement direct à la terre (masse).

Cordon électrique - Il doit être agréé dans le pays d'utilisation
Etats-Unis et Canada: Le cordon doit avoir reçu l'homologation des UL et un certificat de la CSA.

Les spécifications minimales pour un cable flexible sont AWG No. 18 , ouAWG No. 16 pour un cable de longueur inférieure à 2 mètres.

- type SV ou SJ
- 3 conducteurs

Le cordon doit être en mesure d'acheminer un courant nominal d'au moins 10 A .

La prise femelle de branchement doit être du type à mise à la terre (mise à la masse) et respecter la configuration NEMA 5-15P (15 A, 125 V) ou NEMA 6-15P (15 A, 250 V).

| Danemark: | La prise mâle d'alimentation doit respecter la section 107-2 D1 de <br> la norme DK2 1a ou DK2 5a. |
| :--- | :--- |
| Suisse: | La prise mâle d'alimentation doit respecter la norme SEV/ASE <br> 1011. |
| Europe | La prise secteur doit être conforme aux normes CEE 7/7 <br>  <br>  <br>  <br>  <br>  <br>  <br> LECHUKO") <br> LE cordon secteur doit porter la mention <HAR> ou <BASEC> et <br> doit être de type HO3VVF3GO.75 (minimum). |

## Bitte unbedingt vor dem Einbauen des Switches die folgenden Sicherheitsanweisungen durchlesen:

WARNUNG: Die Installation und der Ausbau des Geräts darf nur durch Fachpersonal erfolgen.

- Das Gerät sollte nicht an eine ungeerdete Wechselstromsteckdose angeschlossen werden.
- Das Gerät muß an eine geerdete Steckdose angeschlossen werden, welche die internationalen Sicherheitsnormen erfüllt.
- Der Gerätestecker (der Anschluß an das Gerät, nicht der Wandsteckdosenstecker) muß einen gemäß EN 60320/IEC 320 konfigurierten Geräteeingang haben.
- Die Netzsteckdose muß in der Nähe des Geräts und leicht zugänglich sein. Die Stromversorgung des Geräts kann nur durch Herausziehen des Gerätenetzkabels aus der Netzsteckdose unterbrochen werden.
- Der Betrieb dieses Geräts erfolgt unter den SELV-Bedingungen (Sicherheitskleinstspannung) gemäß IEC 60950. Diese Bedingungen sind nur gegeben, wenn auch die an das Gerät angeschlossenen Geräte unter SELV-Bedingungen betrieben werden.

Stromkabel. Dies muss von dem Land, in dem es benutzt wird geprüft werden:

| Schweiz | Dieser Stromstecker muß die SEV/ASE 1011Bestimmungen einhalten. |
| :--- | :--- |
| Europe | Das Netzkabel muß vom Typ HO3VVF3GO.75 (Mindestanforderung) <br> sein und die Aufschrift < HAR $>$ oder <BASEC> tragen. <br>  |

## Warnings and Cautionary Messages



WARning: This product does not contain any serviceable user parts.
WARNing: Installation and removal of the unit must be carried out by qualified personnel only.
Warning: When connecting this device to a power outlet, connect the field ground lead on the tri-pole power plug to a valid earth ground line to prevent electrical hazards.
WARNING: This switch uses lasers to transmit signals over fiber optic cable. The lasers are compliant with the requirements of a Class 1 Laser Product and are inherently eye safe in normal operation. However, you should never look directly at a transmit port when it is powered on.

Caution: Wear an anti-static wrist strap or take other suitable measures to prevent electrostatic discharge when handling this equipment.
Caution: Do not plug a phone jack connector in the RJ-45 port. This may damage this device.
Caution: Use only twisted-pair cables with RJ-45 connectors that conform to FCC standards.

## Environmental Statements

The manufacturer of this product endeavours to sustain an environmentallyfriendly policy throughout the entire production process. This is achieved though the following means:

- Adherence to national legislation and regulations on environmental production standards.
- Conservation of operational resources.
- Waste reduction and safe disposal of all harmful un-recyclable by-products.
- Recycling of all reusable waste content.
- Design of products to maximize recyclables at the end of the product's life span.
- Continual monitoring of safety standards.


## End of Product Life Span

This product is manufactured in such a way as to allow for the recovery and disposal of all included electrical components once the product has reached the end of its life.

## Manufacturing Materials

There are no hazardous nor ozone-depleting materials in this product.

## DOCUMENTATION

All printed documentation for this product uses biodegradable paper that originates from sustained and managed forests. The inks used in the printing process are non-toxic.

## About This Guide

## Purpose

This guide details the hardware features of the switch, including the physical and performance-related characteristics, and how to install the switch.

## Audience

The guide is intended for use by network administrators who are responsible for installing and setting up network equipment; consequently, it assumes a basic working knowledge of LANs (Local Area Networks).

## Conventions

The following conventions are used throughout this guide to show information:

Note: Emphasizes important information or calls your attention to related features or instructions.


Caution: Alerts you to a potential hazard that could cause loss of data, or damage the system or equipment.

WARNING: Alerts you to a potential hazard that could cause personal injury.

## Related Publications

The following publication gives specific information on how to operate and use the management functions of the switch:

## The Management Guide

Also, as part of the switch's software, there is an online web-based help that describes all management related features.

## About This Guide

## Revision History

This section summarizes the changes in each revision of this guide.

## December 2012 Revision

This is the first revision of this guide.

## Contents

Compliances and Safety Statements ..... 5
About This Guide ..... 15
Contents ..... 17
Tables ..... 21
Figures ..... 23
1 Introduction ..... 25
Overview ..... 25
Switch Architecture ..... 26
Network Management Options ..... 26
Description of Hardware ..... 27
10/100BASE-T Ports ..... 27
SFP Slots ..... 27
Port and System Status LEDs ..... 27
Power Supply Socket ..... 29
Application Examples ..... 29
Network Aggregation Plan ..... 29
Remote Connection with Fiber Cable ..... 30
2 INstalling the Switch ..... 33
Selecting a Site ..... 33
Ethernet Cabling ..... 34
Equipment Checklist ..... 35
Package Contents ..... 35
Optional Rack-Mounting Equipment ..... 35
Mounting ..... 36
Rack Mounting ..... 36
Desktop or Shelf Mounting ..... 38
Installing an Optional SFP Transceiver ..... 39
Connecting to a Power Source ..... 40
Connecting to the Console Port ..... 41
Wiring Map for Serial Cable ..... 41
3 Making Network Connections ..... 43
Connecting Network Devices ..... 43
Twisted-Pair Devices ..... 43
Cabling Guidelines ..... 43
Connecting to PCs, Servers, Hubs and Switches ..... 44
Network Wiring Connections ..... 45
Fiber Optic SFP Devices ..... 46
Connectivity Rules ..... 47
1000BASE-T Cable Requirements ..... 47
1000 Mbps Gigabit Ethernet Collision Domain ..... 48
100 Mbps Fast Ethernet Collision Domain ..... 49
10 Mbps Ethernet Collision Domain ..... 49
Cable Labeling and Connection Records ..... 49
A TROUBLESHOOTING ..... 51
Diagnosing Switch Indicators ..... 51
Power and Cooling Problems ..... 52
Installation ..... 52
In-Band Access ..... 52
B Cables ..... 53
Twisted-Pair Cable and Pin Assignments ..... 53
10BASE-T/100BASE-TX Pin Assignments ..... 54
Straight-Through Wiring ..... 54
Crossover Wiring ..... 55
1000BASE-T Pin Assignments ..... 56
Fiber Standards ..... 57
C Specifications ..... 59
Physical Characteristics ..... 59
Switch Features ..... 60
Management Features ..... 61
Standards ..... 61
Compliances ..... 62
Glossary ..... 63
Index ..... 69

Contents

## TABLES

Table 1: $\quad$ Port Status LEDs ..... 28
Table 2: System Status LEDs ..... 28
Table 3: Console Cable Wiring ..... 41
Table 4: Maximum 1000BASE-T Gigabit Ethernet Cable Length ..... 48
Table 5: Maximum 1000BASE-SX Gigabit Ethernet Cable Lengths ..... 48
Table 6: Maximum 1000BASE-LX Gigabit Ethernet Cable Length ..... 48
Table 7: Maximum 1000BASE-LH Gigabit Ethernet Cable Length ..... 48
Table 8: Maximum Fast Ethernet Cable Lengths ..... 49
Table 9: Maximum Ethernet Cable Length ..... 49
Table 10: Troubleshooting Chart ..... 51
Table 11: $10 / 100 B A S E-T X ~ M D I ~ a n d ~ M D I-X ~ P o r t ~ P i n o u t s ~$ ..... 54
Table 12: 1000BASE-T MDI and MDI-X Port Pinouts ..... 56
Table 13: Fiber Standards ..... 57

## Figures

Figure 1: Front Panel ..... 25
Figure 2: Rear Panel ..... 26
Figure 3: Port and System Status LEDs ..... 28
Figure 4: Power Supply Socket ..... 29
Figure 5: Network Aggregation Plan ..... 30
Figure 6: Remote Connections with Fiber Cable ..... 31
Figure 7: RJ-45 Plug ..... 34
Figure 8: Attaching the Brackets ..... 37
Figure 9: Installing the Switch in a Rack ..... 37
Figure 10: Attaching the Adhesive Feet ..... 38
Figure 11: Inserting an SFP Transceiver into a Slot ..... 39
Figure 12: Power Sockets ..... 40
Figure 13: Serial Port (DB-9 DTE) Pin-Out ..... 41
Figure 14: Making Twisted-Pair Connections ..... 44
Figure 15: Network Wiring Connections ..... 45
Figure 16: Making Fiber Port Connections ..... 47
Figure 17: RJ-45 Connector Pin Numbers ..... 53
Figure 18: Straight-through Wiring ..... 55
Figure 19: Crossover Wiring ..... 55

Figures

## Introduction

## Overview

The ECS3510-52T switch is a intelligent switch with 48 10/100BASE-T ports, and four Gigabit combination ports ${ }^{1}$ that are comprised of an RJ-45 port and an SFP transceiver slot. There is also an SNMP-based management agent embedded on the main board. This agent supports both in-band and out-of-band access for managing the switch.

This switch provides a broad range of powerful features for Layer 2 switching, delivering reliability and consistent performance for your network traffic. It brings order to poorly performing networks by segregating them into separate broadcast domains with IEEE 802.1Q compliant VLANs, and empower multimedia applications with multicast switching and CoS services.

Figure 1: Front Panel


1. RJ-45 ports shared with a SFP tranceiver slots. If an SFP transceiver is plugged in, the corresponding RJ-45 port is disabled.

Figure 2: Rear Panel


## Switch Architecture

This switch employs a wire-speed, non-blocking switching fabric. This permits simultaneous wire-speed transport of multiple packets at low latency on all ports. This switch also features full-duplex capability on all ports, which effectively doubles the bandwidth of each connection.

This switch uses store-and-forward switching to ensure maximum data integrity. With store-and-forward switching, the entire packet must be received into a buffer and checked for validity before being forwarded. This prevents errors from being propagated throughout the network.

## Network Management Options

This switch contains a comprehensive array of LEDs for "at-a-glance" monitoring of network and port status. It also includes a management agent that allows you to configure or monitor the switch using its embedded management software, or via SNMP applications. To manage a switch, you can make a direct connection to the RS-232 console port (out-of-band), or you can manage it through a network connection (in-band) using Telnet, the on-board Web agent, or Windows-based network management software.

For a detailed description of the switch's software features, refer to the Management Guide.

## Description of Hardware

## 10/100BASE-T PORTS

This switch contains 48 RJ- 45 ports that operate at 10 Mbps or 100 Mbps , half or full duplex. Because all ports on both switches support automatic MDI/MDI-X operation, you can use straight-through cables for all network connections to PCs or servers, or to other switches or hubs. (See "Twisted-Pair Cable and Pin Assignments" on page 53.)

Each of these ports support auto-negotiation, so the optimum transmission mode (half or full duplex), and data rate ( 10 or 100 Mbps ) can be selected automatically. If a device connected to one of these ports does not support autonegotiation, the communication mode of that port can be configured manually.

Each port also supports auto-negotiation of flow control, so the switch can automatically prevent port buffers from becoming saturated.

## SFP SLots

The Small Form Factor Pluggable (SFP) transceiver slots are shared with four RJ45 ports (combination ports). In its default configuration, if an SFP transceiver (purchased separately) is installed in a slot and has a valid link on its port, the associated RJ-45 port is disabled and cannot be used. The switch can also be configured to force the use of an RJ-45 port or SFP slot, as required.

## Port and System Status LEDs

The LEDs, which are located on the front panel for easy viewing, are shown below and described in the following tables.

ChAPTER 1 | Introduction
Description of Hardware

Figure 3: Port and System Status LEDs


Table 1: Port Status LEDs

| LED | Condition | Status |
| :--- | :---: | :--- |
| RJ-45 Ports (1-48) |  |  |
| Link/Activity | On/Blinking Green | The port has a valid 10 or 100 Mbps link. Blinking <br> indicates activity. |
| Off | There is no valid link on the port. |  |

Table 2: System Status LEDs

| LED | Condition | Status |
| :--- | :--- | :--- |
| Pwr (Power) | On Green | Internal power is operating normally. |
|  | Off | Power off or failure. |
| Diag | On Green | System is ready and operating normally. |
|  | Blinking Green | System is booting. |
|  | Off | System is not ready or has failed. |

## Power Supply Socket

There is one standard power socket on the rear panel of the switch for the AC power cord.

Figure 4: Power Supply Socket


## Application Examples

This switch is an excellent choice for mixed Ethernet, Fast Ethernet, and Gigabit Ethernet installations where significant growth is expected in the near future. In a basic stand-alone configuration, it can provide direct full-duplex connections to workstations or servers. When the time comes for further expansion, just connect to another hub or switch using one of the Fast Ethernet ports built into the front panel or a Gigabit Ethernet port on a plug-in SFP transceiver.

Some typical application examples are described in this section.

## Network Aggregation Plan

With 52 parallel bridging ports (that is, 52 distinct collision domains), the switch can collapse a complex network down into a single efficient bridged node, increasing overall bandwidth and throughput.

In the figure below, the 10/100BASE-TX ports on the switch are providing 100 Mbps connectivity through layer 2 switches. In addition, the switch is also connecting several servers at 1000 Mbps.

CHAPTER 1 | Introduction
Application Examples

Figure 5: Network Aggregation Plan


## Remote Connection with Fiber Cable

Fiber optic technology allows for longer cabling than any other media type. A 1000BASE-SX (MMF) link can connect to a site up to 550 meters away, a 1000BASE-LX (SMF) link up to 10 km , and a 1000BASE-LH link up to 70 km . This allows the switch to serve as a collapsed backbone, providing direct connectivity for a widespread LAN.

A 1000BASE-SX SFP transceiver can be used for a high-speed connection between floors in the same building, a 1000BASE-LX SFP transciever can be used to connect to other buildings in a campus setting, and a 1000BASE-LH SFP transceiver can be used for a long-haul connection to a remote site.

The figure below illustrates the switch connecting multiple segments with fiber cable.

Figure 6: Remote Connections with Fiber Cable


Chapter 1 | Introduction
Application Examples

## Installing the Switch

## Selecting a Site

Switch units can be mounted in a standard 19-inch equipment rack or on a flat surface. Be sure to follow the guidelines below when choosing a location.

- The site should:
- be at the center of all the devices you want to link and near a power outlet.
- be able to maintain its temperature within 0 to $55^{\circ} \mathrm{C}$ ( 32 to $130{ }^{\circ} \mathrm{F}$ ) and its humidity within $5 \%$ to $95 \%$, non-condensing
- provide adequate space (approximately two inches) on all sides for proper air flow
- be accessible for installing, cabling and maintaining the devices
- allow the status LEDs to be clearly visible
- Make sure twisted-pair cable is always routed away from power lines, fluorescent lighting fixtures and other sources of electrical interference, such as radios and transmitters.
- Make sure that a separate grounded power outlet that provides 100 to 240 VAC, 50 to 60 Hz , is within 2.44 m ( 8 feet) of each device and is powered from an independent circuit breaker. As with any equipment, using a filter or surge suppressor is recommended.


## Ethernet Cabling

To ensure proper operation when installing the switch into a network, make sure that the current cables are suitable for 10BASE-T, 100BASE-TX or 1000BASE-T operation. Check the following criteria against the current installation of your network:

- Cable type: Unshielded twisted pair (UTP) or shielded twisted pair (STP)
cables with RJ-45 connectors; Category 3 or better for 10BASE-T, Category 5 or better for 100BASE-TX, and Category 5 or better for 1000BASE-T.
- Protection from radio frequency interference emissions
- Electrical surge suppression
- Separation of electrical wires (switch related or other) and electromagnetic fields from data based network wiring
- Safe connections with no damaged cables, connectors or shields

Figure 7: RJ-45 Plug


## Equipment Checklist

After unpacking the switch, check the contents to be sure you have received all the components. Then, before beginning the installation, be sure you have all other necessary installation equipment.

## Package Contents

- ECS3510-52T L2 Fast Ethernet Switch
- Four adhesive foot pads
- Bracket Mounting Kit containing two brackets and eight screws for attaching the brackets to the switch
- Power Cord
- RS-232 console cable
- This Installation Guide
- Management Guide CD


## Optional Rack-Mounting Equipment

If you plan to rack-mount the switch, be sure to have the following equipment available:

- Four mounting screws for each device you plan to install in a rack-these are not included
- A screwdriver (Phillips or flathead, depending on the type of screws used)


## MOUNTING

The switch units can be mounted in a standard 19-inch equipment rack or on a desktop or shelf. Mounting instructions for each type of site follow.

## Rack Mounting

Before rack mounting the switch, pay particular attention to the following factors:

- Temperature: Since the temperature within a rack assembly may be higher than the ambient room temperature, check that the rackenvironment temperature is within the specified operating temperature range. (See page 60.)
- Mechanical Loading: Do not place any equipment on top of a rackmounted unit.
- Circuit Overloading: Be sure that the supply circuit to the rack assembly is not overloaded.
- Grounding: Rack-mounted equipment should be properly grounded. Particular attention should be given to supply connections other than direct connections to the mains.


## To rack-mount devices:

1. Attach the brackets to the device using the screws provided in the Bracket Mounting Kit.

Figure 8: Attaching the Brackets

2. Mount the device in the rack, using four rack-mounting screws (not provided).

Figure 9: Installing the Switch in a Rack

3. If installing a single switch only, go to "Connecting to a Power Source" on page 40.

Chapter 2 | Installing the Switch
Mounting
4. If installing multiple switches, mount them in the rack, one below the other, in any order.

## Desktop or Shelf Mounting

1. Attach the four adhesive feet to the bottom of the first switch.

Figure 10: Attaching the Adhesive Feet

2. Set the device on a flat surface near an $A C$ power source, making sure there are at least two inches of space on all sides for proper air flow.
3. If installing a single switch only, go to "Connecting to a Power Source" on page 40.
4. If installing multiple switches, attach four adhesive feet to each one. Place each device squarely on top of the one below, in any order.

## Installing an Optional SFP Transceiver

Figure 11: Inserting an SFP Transceiver into a Slot


The switch supports 1000BASE-SX, 1000BASE-LX, 1000BASE-LH and other SFPcompatible transceivers. To install an SFP transceiver, do the following:

1. Consider network and cabling requirements to select an appropriate SFP transceiver type.
2. Insert the transceiver with the optical connector facing outward and the slot connector facing down. Note that SFP transceivers are keyed so they can only be installed in one orientation.
3. Slide the SFP transceiver into the slot until it clicks into place.

Note: SFP transceivers are hot-swappable. The switch does not need to be powered off before installing or removing a transceiver. However, always first disconnect the network cable before removing a transceiver.
Note: SFP transceivers are not provided in the switch package.

## Connecting to a Power Source

To connect a device to a power source:

1. Insert the power cable plug directly into the socket located at the back of the device.

Figure 12: Power Sockets

2. Plug the other end of the cable into a grounded, 3-pin socket.


NотE: For International use, you may need to change the AC line cord. You must use a line cord set that has been approved for the socket type in your country.
3. Check the front-panel LEDs as the device is powered on to be sure the Power LED is lit. If not, check that the power cable is correctly plugged in.
4. If you have purchased a Redundant Power Unit, connect it to the switch and to an AC power source now, following the instructions included with the package.

## Connecting to the Console Port

The DB-9 serial port on the switch's front panel is used to connect to the switch for out-of-band console configuration. The on-board configuration program can be accessed from a terminal or a PC running a terminal emulation program. The pin assignments used to connect to the serial port are described in the following figure and table.

Figure 13: Serial Port (DB-9 DTE) Pin-Out


## Wiring Map for Serial Cable

Table 3: Console Cable Wiring

| Switch's 9-Pin Console Port | Null Modem | PC's 9-Pin DTE Port |
| :---: | :---: | :---: |
| 2 RXD (receive data) | <------------------- | 3 TXD (transmit data) |
| 3 TXD (transmit data) | -------> | 2 RXD (receive data) |
| 5 SGND (signal ground) | ---- | 5 SGND (signal ground) |

No other pins are used.

Chapter 2 | Installing the Switch
Connecting to the Console Port

The serial port's configuration requirements are as follows:

- Default Baud rate-115,200 bps
- Character Size-8 Characters
- Parity-None
- Stop bit-One
- Data bits-8


## Making Network Connections

## Connecting Network Devices

This switch is designed to interconnect multiple segments (or collision domains). It can be connected to network cards in PCs and servers, as well as to hubs, switches or routers. It may also be connected to devices using optional SFP tranceivers.

## Twisted-Pair Devices

Each device requires an unshielded twisted-pair (UTP) cable with RJ-45 connectors at both ends. Use Category 5, 5e or 6 cable for 1000BASE-T connections, Category 5 or better for 100BASE-TX connections, and Category 3 or better for 10BASE-T connections.

## Cabling Guidelines

The RJ-45 ports on the switch supports automatic MDI/MDI-X pinout configuration, so you can use standard straight-through twisted-pair cables to connect to any other network device (PCs, servers, switches, routers, or hubs).

See Appendix B for further information on cabling.

CAUtion: Do not plug a phone jack connector into an RJ-45 port. This will damage the switch. Use only twisted-pair cables with RJ-45 connectors that conform to FCC standards.

## Connecting to PCs, Servers, Hubs and Switches

1. Attach one end of a twisted-pair cable segment to the device's RJ-45 connector.

Figure 14: Making Twisted-Pair Connections

2. If the device is a PC card and the switch is in the wiring closet, attach the other end of the cable segment to a modular wall outlet that is connected to the wiring closet. (See "Network Wiring Connections" on page 45.) Otherwise, attach the other end to an available port on the switch.

Make sure each twisted pair cable does not exceed 100 meters ( 328 ft ) in length.
3. As each connection is made, the Link LED (on the switch) corresponding to each port will light to indicate that the connection is valid.


Note: Avoid using flow control on a port connected to a hub unless it is actually required to solve a problem. Otherwise back pressure jamming signals may degrade overall performance for the segment attached to the hub.

## Network Wiring Connections

Today, the punch-down block is an integral part of many of the newer equipment racks. It is actually part of the patch panel. Instructions for making connections in the wiring closet with this type of equipment follows.

1. Attach one end of a patch cable to an available port on the switch, and the other end to the patch panel.
2. If not already in place, attach one end of a cable segment to the back of the patch panel where the punch-down block is located, and the other end to a modular wall outlet.
3. Label the cables to simplify future troubleshooting.

Figure 15: Network Wiring Connections


## Fiber Optic SFP Devices

An optional Gigabit SFP transceiver (1000BASE-SX, 1000BASE-LX, or 1000BASE-LH) can be used for a backbone connection between switches, or for connecting to a high-speed server.

Each multimode fiber optic port requires $50 / 125$ or $62.5 / 125$ micron multimode fiber optic cabling with an LC connector at both ends. Each single-mode fiber port requires 9/125 micron single-mode fiber optic cable with an LC connector at both ends.

> WARNING: This switch uses lasers to transmit signals over fiber optic cable. The lasers are compliant with the requirements of a Class 1 Laser Product and are inherently eye safe in normal operation. However, you should never look directly at a transmit port when it is powered on.
> WARNING: When selecting a fiber SFP device, considering safety, please make sure that it can function at a temperature that is not less than the recommended maximum operational temperature of the product. You must also use an approved Laser Class 1 SFP transceiver.

1. Remove and keep the LC port's rubber cover. When not connected to a fiber cable, the rubber cover should be replaced to protect the optics.
2. Check that the fiber terminators are clean. You can clean the cable plugs by wiping them gently with a clean tissue or cotton ball moistened with a little ethanol. Dirty fiber terminators on fiber cables will impair the quality of the light transmitted through the cable and lead to degraded performance on the port.
3. Connect one end of the cable to the LC port on the switch and the other end to the LC port on the other device. Since LC connectors are keyed, the cable can be attached in only one orientation.

Figure 16: Making Fiber Port Connections

4. As a connection is made, check the Link LED on the switch corresponding to the port to be sure that the connection is valid.

The 1000BASE-SX, 1000BASE-LX and 1000BASE-LH fiber optic ports operate at 1 Gbps full duplex, with auto-negotiation of flow control. The maximum length for fiber optic cable operating at Gigabit speed will depend on the fiber type as listed under "1000 Mbps Gigabit Ethernet Collision Domain" on page 48.

## Connectivity Rules

When adding hubs (repeaters) to your network, please follow the connectivity rules listed in the manuals for these products. However, note that because switches break up the path for connected devices into separate collision domains, you should not include the switch or connected cabling in your calculations for cascade length involving other devices.

## 1000BASE-T Cable Requirements

All Category 5 UTP cables that are used for 100BASE-TX connections should also work for 1000BASE-T, providing that all four wire pairs are connected. However, it is recommended that for all critical connections, or any new cable installations,

Category 5e (enhanced Category 5) or Category 6 cable should be used. The Category 5 e specification includes test parameters that are only recommendations for Category 5. Therefore, the first step in preparing existing Category 5 cabling for running 1000BASE-T is a simple test of the cable installation to be sure that it complies with the IEEE 802.3ab standards.

## 1000 Mbps Gigabit Ethernet Collision Domain

Table 4: Maximum 1000BASE-T Gigabit Ethernet Cable Length

| Cable Type | Maximum Cable Length | Connector |
| :--- | :--- | :--- |
| Category 5, 5e, or 6 100-ohm UTP or STP | $100 \mathrm{~m}(328 \mathrm{ft})$ | RJ-45 |

Table 5: Maximum 1000BASE-SX Gigabit Ethernet Cable Lengths

| Fiber Size | Fiber Bandwidth | Maximum Cable Length | Connector |
| :--- | :--- | :--- | :--- |
| $62.5 / 125$ micron | $160 \mathrm{MHz} / \mathrm{km}$ | $2-220 \mathrm{~m}(7-722 \mathrm{ft})$ | LC |
| multimode fiber | $200 \mathrm{MHz} / \mathrm{km}$ | $2-275 \mathrm{~m}(7-902 \mathrm{ft})$ | LC |
| $50 / 125$ micron | $400 \mathrm{MHz} / \mathrm{km}$ | $2-500 \mathrm{~m}(7-1641 \mathrm{ft})$ | LC |
| multimode fiber | $500 \mathrm{MHz} / \mathrm{km}$ | $2-550 \mathrm{~m}(7-1805 \mathrm{ft})$ | LC |

Table 6: Maximum 1000BASE-LX Gigabit Ethernet Cable Length

| Fiber Size | Fiber Bandwidth | Maximum Cable Length | Connector |
| :--- | :--- | :--- | :--- |
| $9 / 125$ micron single- <br> mode fiber | N/A | $2 \mathrm{~m}-10 \mathrm{~km}(7 \mathrm{ft}-6.2$ miles $)$ | LC |

Table 7: Maximum 1000BASE-LH Gigabit Ethernet Cable Length

| Fiber Size | Fiber Bandwidth | Maximum Cable Length | Connector |
| :--- | :--- | :--- | :--- |
| $9 / 125$ micron single- <br> mode fiber | N/A | $2 \mathrm{~m}-70 \mathrm{~km}$ | LC |

## 100 Mbps Fast Ethernet Collision Domain

Table 8: Maximum Fast Ethernet Cable Lengths

| Type | Cable Type | Max. Cable Length | Connector |
| :--- | :--- | :--- | :--- |
| 100BASE-TX | Category 5 or better 100-ohm <br>  <br> UTP or STP | $100 \mathrm{~m}(328 \mathrm{ft})$ | RJ-45 |

## 10 Mbps Ethernet Collision Domain

Table 9: Maximum Ethernet Cable Length

| Type | Cable Type | Max. Cable Length | Connector |
| :--- | :--- | :--- | :--- |
| 10BASE-T | Category 3 or better 100-ohm UTP | $100 \mathrm{~m}(328 \mathrm{ft})$ | RJ-45 |

## Cable Labeling and Connection Records

When planning a network installation, it is essential to label the opposing ends of cables and to record where each cable is connected. Doing so will enable you to easily locate inter-connected devices, isolate faults and change your topology without need for unnecessary time consumption.

To best manage the physical implementations of your network, follow these guidelines:

- Clearly label the opposing ends of each cable.
- Using your building's floor plans, draw a map of the location of all networkconnected equipment. For each piece of equipment, identify the devices to which it is connected.
- Note the length of each cable and the maximum cable length supported by the switch ports.
- For ease of understanding, use a location-based key when assigning prefixes to your cable labeling.
- Use sequential numbers for cables that originate from the same equipment.
- Differentiate between racks by naming accordingly.

Chapter 3 | Making Network Connections Cable Labeling and Connection Records

- Label each separate piece of equipment.
- Display a copy of your equipment map, including keys to all abbreviations at each equipment rack.


## TROUBLESHOOTING

## Diagnosing Switch Indicators

Table 10: Troubleshooting Chart

| Symptom | Action |
| :--- | :--- |
| Pwr LED is Off | Power supply is disconnected. <br> Check connections between the switch, the power cord, <br> and the wall outlet. <br> Contact your dealer for assistance. |
| Diag LED is Off | Power cycle the switch to try and clear the condition. <br> If the condition does not clear, contact your dealer for <br> assistance. |
| Link/Act LED is Off that the switch and attached device are powered |  |
| on. |  |
| Be sure the cable is plugged into both the switch and |  |
| corresponding device. |  |
| Verify that the proper cable type is used and its length |  |
| does not exceed specified limits. |  |
| Check the adapter on the attached device and cable |  |
| connections for possible defects. Replace the defective |  |
| adapter or cable if necessary. |  |

## Power and Cooling Problems

If the power indicator does not turn on when the power cord is plugged in, you may have a problem with the power outlet, power cord, or internal power supply. However, if the unit powers off after running for a while, check for loose power connections, power losses or surges at the power outlet. If you still cannot isolate the problem, then the internal power supply may be defective.

## InSTALLATION

Verify that all system components have been properly installed. If one or more components appear to be malfunctioning (such as the power cord or network cabling), test them in an alternate environment where you are sure that all the other components are functioning properly.

## In-Band Access

You can access the management agent in the switch from anywhere within the attached network using Telnet, a Web browser, or other network management software tools. However, you must first configure the switch with a valid IP address, subnet mask, and default gateway. If you have trouble establishing a link to the management agent, check to see if you have a valid network connection. Then verify that you entered the correct IP address. Also, be sure the port through which you are connecting to the switch has not been disabled. If it has not been disabled, then check the network cabling that runs between your remote location and the switch.

Note: The management agent accepts up to four simultaneous Telnet sessions. If the maximum number of sessions already exists, an additional Telnet connection will not be able to log into the system.

## Cables

## Twisted-Pair Cable and Pin Assignments

For 10/100BASE-TX connections, the twisted-pair cable must have two pairs of wires. For 1000BASE-T connections the twisted-pair cable must have four pairs of wires. Each wire pair is identified by two different colors. For example, one wire might be green and the other, green with white stripes. Also, an RJ-45 connector must be attached to both ends of the cable.

CAUtion: DO NOT plug a phone jack connector into any RJ-45 port. Use only twisted-pair cables with RJ-45 connectors that conform with FCC standards.

Caution: Each wire pair must be attached to the RJ-45 connectors in a specific orientation.

The figure below illustrates how the pins on the RJ-45 connector are numbered. Be sure to hold the connectors in the same orientation when attaching the wires to the pins.

Figure 17: RJ-45 Connector Pin Numbers


## 10BASE-T/100BASE-TX Pin Assignments

Use unshielded twisted-pair (UTP) or shielded twisted-pair (STP) cable for RJ-45 connections: 100-ohm Category 3 or better cable for 10 Mbps connections, or 100 -ohm Category 5 or better cable for 100 Mbps connections. Also be sure that the length of any twisted-pair connection does not exceed 100 meters ( 328 feet).

The RJ-45 ports on the switch base unit support automatic MDI/MDI-X operation, so you can use straight-through cables for all network connections to PCs or servers, or to other switches or hubs. In straight-through cable, pins 1, 2, 3 , and 6 , at one end of the cable, are connected straight through to pins $1,2,3$, and 6 at the other end of the cable. When using any RJ-45 port on this switch, you can use either straight-through or crossover cable.

## Table 11: 10/100BASE-TX MDI and MDI-X Port Pinouts

| Pin | MDI Signal Name | MDI-X Signal Name |
| :--- | :--- | :--- |
| 1 | Transmit Data plus (TD+) | Receive Data plus (RD+) |
| 2 | Transmit Data minus (TD-) | Receive Data minus (RD-) |
| 3 | Receive Data plus (RD+) | Transmit Data plus (TD+) |
| 6 | Receive Data minus (RD-) | Transmit Data minus (TD-) |
| $4,5,7,8$ | Not used | Not used |

Note: The " + " and " - " signs represent the polarity of the wires that make up each wire pair.

## Straight-Through Wiring

If the twisted-pair cable is to join two ports and only one of the ports has an internal crossover (MDI-X), the two pairs of wires must be straight-through. (When auto-negotiation is enabled for any RJ-45 port on this switch, you can use either straight-through or crossover cable to connect to any device type.)

You must connect all four wire pairs as shown in the following diagram to support Gigabit Ethernet.

Figure 18: Straight-through Wiring
EIA/TIA 568B RJ-45 Wiring Standard 10/100BASE-TX Straight-through Cable


## Crossover Wiring

If the twisted-pair cable is to join two ports and either both ports are labeled with an "X" (MDI-X) or neither port is labeled with an "X" (MDI), a crossover must be implemented in the wiring. (When auto-negotiation is enabled for any RJ-45 port on this switch, you can use either straight-through or crossover cable to connect to any device type.)

You must connect all four wire pairs as shown in the following diagram to support Gigabit Ethernet.

Figure 19: Crossover Wiring
EIA/TIA 568B RJ-45 Wiring Standard
10/100BASE-TX Crossover Cable


## 1000BASE-T Pin Assignments

All 1000BASE-T ports support automatic MDI/MDI-X operation, so you can use straight-through cables for all network connections to PCs or servers, or to other switches or hubs.

The table below shows the 1000BASE-T MDI and MDI-X port pinouts. These ports require that all four pairs of wires be connected. Note that for 1000BASE-T operation, all four pairs of wires are used for both transmit and receive.

Use 100-ohm Category 5, 5e or 6 unshielded twisted-pair (UTP) or shielded twisted-pair (STP) cable for 1000BASE-T connections. Also be sure that the length of any twisted-pair connection does not exceed 100 meters ( 328 feet).

Table 12: 1000BASE-T MDI and MDI-X Port Pinouts

| Pin | MDI Signal Name | MDI-X Signal Name |
| :--- | :--- | :--- |
| 1 | Bi-directional Pair A Plus (BI_DA+) | Bi-directional Pair B Plus (BI_DB+) |
| 2 | Bi-directional Pair A Minus (BI_DA-) | Bi-directional Pair B Minus (BI_DB-) |
| 3 | Bi-directional Pair B Plus (BI_DB+) | Bi-directional Pair A Plus (BI_DA+) |
| 4 | Bi-directional Pair C Plus (BI_DC+) | Bi-directional Pair D Plus (BI_DD+) |
| 5 | Bi-directional Pair C Minus (BI_DC-) | Bi-directional Pair D Minus (BI_DD-) |
| 6 | Bi-directional Pair B Minus (BI_DB-) | Bi-directional Pair A Minus (BI_DA-) |
| 7 | Bi-directional Pair D Plus (BI_DD+) | Bi-directional Pair C Plus (BI_DC+) |
| 8 | Bi-directional Pair D Minus (BI_DD-) | Bi-directional Pair C Minus (BI_DC-) |

## Cable Testing for Existing Category 5 Cable

Installed Category 5 cabling must pass tests for Attenuation, Near-End Crosstalk (NEXT), and Far-End Crosstalk (FEXT). This cable testing information is specified in the ANSI/TIA/EIA-TSB-67 standard. Additionally, cables must also pass test parameters for Return Loss and Equal-Level Far-End Crosstalk (ELFEXT). These tests are specified in the ANSI/TIA/EIA-TSB-95 Bulletin, "The Additional Transmission Performance Guidelines for 100 Ohm 4-Pair Category 5 Cabling."

Note that when testing your cable installation, be sure to include all patch cables between switches and end devices.

## Adjusting Existing Category 5 Cabling to Run 1000BASE-T

If your existing Category 5 installation does not meet one of the test parameters for 1000BASE-T, there are basically three measures that can be applied to try and correct the problem:

1. Replace any Category 5 patch cables with high-performance Category 5 e or Category 6 cables.
2. Reduce the number of connectors used in the link.
3. Reconnect some of the connectors in the link.

## Fiber Standards

The International Telecommunication Union (ITU-T) has standardized various fiber types for data networks. These are summarized in the following table.

Table 13: Fiber Standards

| ITU-T <br> Standard | Description | Application |
| :---: | :---: | :---: |
| G. 651 | Multimode Fiber 50/125-micron core | Short-reach connections in the 1300nm or $850-\mathrm{nm}$ band |
| G. 652 | Non-Dispersion-Shifted Fiber Single-mode, 9/125-micron core | Longer spans and extended reach. Optimized for operation in the 1310nm band. but can also be used in the 1550-nm band |
| G.652.C | Low Water Peak Non-Dispersion-Shifted Fiber Single-mode, 9/125-micron core | Longer spans and extended reach. Optimized for wavelength-division multiplexing (WDM) transmission across wavelengths from 1285 to 1625 nm . The zero dispersion wavelength is in the $1310-\mathrm{nm}$ region. |
| G. 653 | Dispersion-Shifted Fiber Single-mode, 9/125-micron core | Longer spans and extended reach. Optimized for operation in the region from 1500 to $1600-\mathrm{nm}$. |

Table 13: Fiber Standards (Continued)

| ITU-T <br> Standard | Description | Application |
| :--- | :--- | :--- |
| G.654 | 1550-nm Loss-Minimized Fiber <br> Single-mode, 9/125-micron core | Extended long-haul applications. <br> Optimized for high-power <br> transmission in the 1500 to 1600-nm <br> region, with low loss in the 1550-nm <br> band. |
| G.655 | Non-Zero Dispersion-Shifted <br> Fiber <br> Single-mode, 9/125-micron core | Extended long-haul applications. <br> Optimized for high-power dense <br> wavelength-division multiplexing <br> (DWDM) operation in the region from <br> 1500 to 1600-nm. |
|  | Sing |  |

## Specifications

## Physical Characteristics

## Ports <br> 48 10/100BASE-TX, with auto-negotiation <br> 4 Combination Gigabit Ports (RJ-45/SFP)

## Network Interface

Ports 1-48: RJ-45 connector, auto MDI/X
10BASE-T: RJ-45 (100-ohm, UTP cable; Category 3 or better)
100BASE-TX: RJ-45 (100-ohm, UTP cable; Category 5 or better)
Ports 49-52: RJ-45 connector, auto MDI/X
10BASE-T: RJ-45 (100-ohm, UTP cable; Category 3 or better)
100BASE-TX: RJ-45 (100-ohm, UTP cable; Category 5 or better)
1000BASE-T: RJ-45 (100-ohm, UTP cable; Category 5e or better)

## Buffer Architecture <br> 8 Mbits

## Aggregate Bandwidth

### 17.6 Gbps

## Switching Database

16K MAC address entries

## LEDs

System: Pwr (Power Supply), Diag (Diagnostic)
Port: Link/Activity

Weight<br>3 kg (6.6 lbs)

## Size <br> $4.3 \times 44 \times 23 \mathrm{~cm}(1.7 \times 17.3 \times 9.1 \mathrm{in}$.)

## Temperature

Operating: 0 to $55^{\circ} \mathrm{C}$ ( 32 to $130{ }^{\circ} \mathrm{F}$ )
Storage: -20 to $70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$

Humidity
Operating: 5\% to 95\% (non-condensing)

## POWER SUPPLY

Internal, auto-ranging transformer: $100-240$ VAC, $50 / 60 \mathrm{~Hz}, 1.5 \mathrm{~A}$

## Power Consumption

40 Watts maximum

Maximum Current
0.36 A @ 100 VAC
0.17 @ 240 VAC

## Switch Features

## Forwarding Mode

Store-and-forward

## Throughput

Wire speed

## Flow Control

Full Duplex: IEEE 802.3x
Half Duplex: Back pressure

## Management Features

## In-Band Management

Telnet, SSH, HTTP, or SNMP manager

Out-of-Band Management
RS-232 DB-9 console port

## Software Loading

HTTP or FTP/TFTP in-band, or XModem out-of-band

## Standards

IEEE 802.3 Ethernet
IEEE 802.3u Fast Ethernet
IEEE $802.3 z$ and 802.3ab Gigabit Ethernet
IEEE 802.1D (Bridging)
IEEE 802.3x full-duplex flow control
IEEE 802.1Q (Virtual LAN)
ISO/IEC 8802-3

```
APPENDIX C | Specifications
Compliances
```


## Compliances

## CE Mark

## Emissions

FCC Class A
EN55022 Class A
CISPR 22/AS/NZS CISPR22 Class A VCCI Class A

Immunity
EN55024/CISPR 24

## SAFETY

UL/C-UL (CSA 22.2 No 60950-1 \& UL 60950-1)
CB (IEC 60950-1/ EN60950-1)

## Glossary

## 10BASE-T

IEEE 802.3 specification for 10 Mbps Ethernet over two pairs of Category 3, 4, or 5 UTP cable.

## 100BASE-FX

IEEE 802.3u specification for 100 Mbps Ethernet over two strands of 50/125, $62.5 / 125$ or $9 / 125$ micron core fiber cable.

## 100BASE-TX

IEEE 802.3u specification for 100 Mbps Ethernet over two pairs of Category 5 UTP cable.

## 1000BASE-LX

IEEE 802.3 z specification for Gigabit Ethernet over two strands of $50 / 125,62.5 /$ 125 or $9 / 125$ micron core fiber cable.

## 1000BASE-LH

A specification for Gigabit Ethernet over two strands of $9 / 125$ micron core fiber cable.

## 1000BASE-SX

IEEE 802.3 z specification for Gigabit Ethernet over two strands of $50 / 125$ or 62.5/125 micron core fiber cable.

## 1000BASE-T

IEEE 802.3ab specification for Gigabit Ethernet over 100-ohm Category 5, 5e or 6 twisted-pair cable (using all four wire pairs).

## Auto-Negotiation

Signalling method allowing each node to select its optimum operational mode (e.g., speed and duplex mode) based on the capabilities of the node to which it is connected.

## BANDWIDTH

The difference between the highest and lowest frequencies available for network signals. Also synonymous with wire speed, the actual speed of the data transmission along the cable.

## Collision Domain

Single CSMA/CD LAN segment.

## CSMA/CD

CSMA/CD (Carrier Sense Multiple Access/Collision Detect) is the communication method employed by Ethernet, Fast Ethernet, and Gigabit Ethernet.

## End Station

A workstation, server, or other device that does not forward traffic.

## Ethernet

A network communication system developed and standardized by DEC, Intel, and Xerox, using baseband transmission, CSMA/CD access, logical bus topology, and coaxial cable. The successor IEEE 802.3 standard provides for integration into the OSI model and extends the physical layer and media with repeaters and implementations that operate on fiber, thin coax and twisted-pair cable.

## Fast Ethernet

A 100 Mbps network communication system based on Ethernet and the CSMA/ CD access method.

## Full Duplex

Transmission method that allows two network devices to transmit and receive concurrently, effectively doubling the bandwidth of that link.

## Gigabit Ethernet

A 1000 Mbps network communication system based on Ethernet and the CSMA/ CD access method.

## IEEE

Institute of Electrical and Electronic Engineers.

## IEEE 802.3

Defines carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications.

## IEEE 802.3AB

Defines CSMA/CD access method and physical layer specifications for 1000BASE-T Gigabit Ethernet. (Now incorporated in IEEE 802.3-2005.)

## IEEE 802.3u

Defines CSMA/CD access method and physical layer specifications for 100BASETX Fast Ethernet. (Now incorporated in IEEE 802.3-2005.)

## IEEE 802.3x

Defines Ethernet frame start/stop requests and timers used for flow control on full-duplex links. (Now incorporated in IEEE 802.3-2005.)

## IEEE 802.3z

Defines CSMA/CD access method and physical layer specifications for 1000BASE Gigabit Ethernet. (Now incorporated in IEEE 802.3-2005.)

## LAN Segment

Separate LAN or collision domain.

## LED

Light emitting diode used for monitoring a device or network condition.

## Local Area Network (LAN)

A group of interconnected computer and support devices.

## Media Access Control (MAC)

A portion of the networking protocol that governs access to the transmission medium, facilitating the exchange of data between network nodes.

## MIB

An acronym for Management Information Base. It is a set of database objects that contains information about the device.

## Modal Bandwidth

Bandwidth for multimode fiber is referred to as modal bandwidth because it varies with the modal field (or core diameter) of the fiber. Modal bandwidth is specified in units of MHz per km, which indicates the amount of bandwidth supported by the fiber for a one km distance.

## Network Diameter

Wire distance between two end stations in the same collision domain.

## RJ-45 Connector <br> A connector for twisted-pair wiring.

## Switched Ports

Ports that are on separate collision domains or LAN segments.

## TIA

Telecommunications Industry Association

Transmission Control Protocol/Internet Protocol (TCP/IP)
Protocol suite that includes TCP as the primary transport protocol, and IP as the network layer protocol.

## User Datagram Protocol (UDP)

UDP provides a datagram mode for packet-switched communications. It uses IP as the underlying transport mechanism to provide access to IP-like services. UDP packets are delivered just like IP packets - connection-less datagrams that may be discarded before reaching their targets. UDP is useful when TCP would be too complex, too slow, or just unnecessary.

## UTP

Unshielded twisted-pair cable.

## Virtual LAN (VLAN)

A Virtual LAN is a collection of network nodes that share the same collision domain regardless of their physical location or connection point in the network. A VLAN serves as a logical workgroup with no physical barriers, allowing users to share information and resources as though located on the same LAN.

Glossary

## Index

## Numerics

10 Mbps connectivity rules 49
1000BASE-LH fiber cable Lengths 48
1000BASE-LX fiber cable Lengths 48

## 1000BASE-SX fiber cable Lengths 48

 1000BASE-Tpin assignments 56
ports 27
100BASE-TX
ports 27
100BASE-TX, cable lengths 49 10BASE-T
ports 27
10BASE-T, cable lengths 49

## A

adhesive feet, attaching 38
air flow requirements 33
application example 29

## B

brackets, attaching 37
buffer size 59

## C

cable
Ethernet cable compatibility 34
fiber standards 57
labeling and connection records 49 lengths 49
cleaning fiber terminators 46
connectivity rules
10 Mbps 49
console port
pin assignments 41
contents of package 35
cooling problems 52
cord sets, international 40

## D

desktop mounting 38
device connections 43
E
electrical interference, avoiding ..... 33
equipment checklist 35
Ethernet connectivity rules ..... 49
F
features ..... 61
fiber cables ..... 46
G
grounding for racks ..... 36
।
indicators, LED ..... 27
installation
connecting devices to the switch ..... 44desktop or shelf mounting 38
port connections ..... 43
power requirements ..... 33
problems ..... 52
rack mounting 36
site requirements ..... 33
wiring closet connections ..... 45
L
laser safety ..... 46
LED indicators
Link ..... 28
Power ..... 28
location requirements ..... 33
Mmanagementagent 26
features 61, 62out-of-band 26
SNMP 26Web-based 26
mounting the switch
in a rack ..... 36
on a desktop or shelf ..... 38
multimode fiber optic cables ..... 46

## InDEX

N
network
connections 43
examples 29
0
out-of-band management 26
$P$
package contents 35
pin assignments 53
1000BASE-T 56
10BASE-T/100BASE-TX 54
console port 41
DB-9 41
ports, connecting to 43
power, connecting to 40

## R

rack mounting 36
rear panel receptacles 29
RJ-45 port 27
connections 43
pinouts 56
rubber foot pads, attaching 38

## S

screws for rack mounting 35
site selelction 33
SNMP agent 26
specifications
compliances 61, 62
environmental 60
physical 59
power 60
standards, compliance 61, 62
status LEDs 27
surge suppressor, using 33

## T

Telnet 52
temperature within a rack 36
troubleshooting
in-band access 52
power and cooling problems 52
twisted-pair connections 43

